Fate of disseminated dead neurons in the cortical ischemic penumbra: ultrastructure indicating a novel scavenger mechanism of microglia and astrocytes.

نویسندگان

  • Umeo Ito
  • Jun Nagasao
  • Emiko Kawakami
  • Kiyomitsu Oyanagi
چکیده

BACKGROUND AND PURPOSE Because the mechanism for scavenging acidophilic electron-dense dead neurons disseminated among the neuritic networks of surviving neurons in the ischemic penumbra of the cerebral cortex is still obscure, we investigated the fate of them up to 24 weeks after the ischemic insult. METHODS Stroke-positive animals were selected according to their stroke index score during the first 10-minute left carotid occlusion done twice with a 5-hour interval. The animals were killed at various times after the second ischemic insult. Ultrathin sections including the second through fourth cortical layers were obtained from the neocortex coronally sectioned at the infundibular level in which the penumbra appeared and was observed by electron microscopy. We determined the percentages of resting, activated, and phagocytic microglia and astrocytes in the specimens obtained at various times postischemia. RESULTS The electron-dense neurons had been fragmented into granular pieces by invading astrocytic processes from the periphery of the dead neurons and only the central portion remained. These granular pieces were dispersed along the extracellular spaces in the neuropil. By 8 to 24 weeks, the central core portion became a tiny vesicular particle (3.5 to 5.5 mum in diameter) with a central dot. Microglia and astrocytes phagocytized these dispersed granular pieces. CONCLUSIONS We found a novel scavenger mechanism in the ischemic penumbra, one by which dead neurons were fragmented by invading small astrocytic processes and only a thinned-out core portion remained, which finally became a tiny vesicular particle. The dispersed fragmented pieces were phagocytized by the microglia and astrocytes late, at 8 to 24 weeks postischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of glia in neurological disease

Glial cells form a network in the central nervous system to support neurons and interact with them. The glia consist essentially of astrocytes that help with the nutrition of neurons and react in some cases of injury, oligodendrocytes that produce myelin, and microglia that are derived from the haemopoietic system and are concerned with the immunological defense of the nervous system. Experimen...

متن کامل

The role of glia in neurological disease

Glial cells form a network in the central nervous system to support neurons and interact with them. The glia consist essentially of astrocytes that help with the nutrition of neurons and react in some cases of injury, oligodendrocytes that produce myelin, and microglia that are derived from the haemopoietic system and are concerned with the immunological defense of the nervous system. Experimen...

متن کامل

Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra.

After an ischemic stroke, neurons in the core are rapidly committed to die, whereas neuron death in the slowly developing penumbra is more amenable to therapeutic intervention. Microglia activation contributes to delayed inflammation, but because neurotoxic mechanisms in the penumbra are not well understood, we developed an in vitro model of microglia activation and propagated neuron killing. T...

متن کامل

P108: Microglia in Traumatic Brain Injury

Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...

متن کامل

Degeneration of astrocytic processes and their mitochondria in cerebral cortical regions peripheral to the cortical infarction: heterogeneity of their disintegration is closely associated with disseminated selective neuronal necrosis and maturation of injury.

BACKGROUND AND PURPOSE Astrocytes support neuronal functions by regulating the extracellular ion-homeostasis and levels of neurotransmitters, and by providing fuel such as lactate to the neurons via their astrocytic processes (APs). Whether injured APs are associated with neuronal survival/death is still an unanswered question. We investigated APs in the neuropil, especially those around astroc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 38 9  شماره 

صفحات  -

تاریخ انتشار 2007